Table III. Final Bond Lengths and Angles in 8

atoms	distance	atoms	distance
$\mathrm{S}(1)-\mathrm{S}(2)$	$2.064(9)$	$\mathrm{S}(1)-\mathrm{C}(1)$	$1.78(2)$
$\mathrm{S}(2)-\mathrm{C}(2)$	$1.81(2)$	$\mathrm{N}(1)-\mathrm{C}(3)$	$1.42(3)$
$\mathrm{N}(2)-\mathrm{C}(6)$	$1.45(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.42(3)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.38(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.38(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.43(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.34(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.41(3)$		
atoms	angle	atoms	angle
$\mathrm{S}(2)^{\prime}-\mathrm{S}(1)-\mathrm{C}(1)$	$105.3(9)$	$\mathrm{S}(1)^{\prime}-\mathrm{S}(2)-\mathrm{C}(2)$	$102.5(8)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$122(2)$	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$119(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$120(2)$	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$121(2)$
$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$116(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$123(2)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$125(2)$	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$120(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$116(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$123(2)$	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(1)$	$123(2)$
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$119(2)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$117(2)$

sentially according to literature procedure. ${ }^{9}$ The red material was conveniently recrystallized from DMF instead of boiling ani-line-ethanol: $\mathrm{mp}>225^{\circ} \mathrm{C} \mathrm{dec}$; $\mathrm{IR}(\mathrm{KBr}) 3400,3300,1600,1595$, $1590,1460,1285,1220,1155,918,810 \mathrm{~cm}^{-1}$; UV-visible (DMF) $\lambda_{\max }(\log$ є $) 276 \mathrm{~nm}(4.14), 313$ (3.58), 4.91 (4.02), (DMF/HCI) 267 (3.95), 410 (3.93); mass spectrum, m / e (rel intens, \%) 340 (0.3), 276 (35), 243 (26), 202 (100), 169 (44).

1,4-Diaminobenzene-2,3-dithiol (9). Tetrathiocin 8 (100 mg) was heated cautiously with hypophosphorus acid ($25 \%, 5 \mathrm{~mL}$) for 20 min at $100^{\circ} \mathrm{C}$ until a pale yellow solution resulted. The mixture was concentrated to half its volume in vacuo. Hydriodic acid (48%) was added dropwise until the HI salt precipitated (150 mg). This was recrystallized best from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}: \mathrm{mp}$ $>150{ }^{\circ} \mathrm{C}$ dec; mass spectrum; m / e (rel intens, $\%$) $172\left(\mathrm{M}^{+}, 2.4 \%\right)$; IR, $2800 \mathrm{br}, 1560,1510,1400,1280,830,725 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$: C, 16.83; H, 2.12. Found: C, 16.79; H, 2.48.

2,3-Bis(methylthio)-1,4-benzenediamine (10). A suspension of tetrathiocin $8(350 \mathrm{mg})$ in THF-water $\left(3: 17,20 \mathrm{~cm}^{3}\right)$ containing aqueous sodium hydroxide $\left(1 \mathrm{~cm}^{3}\right)$ was stirred under nitrogen after the addition of excess NaBH_{4}. After 3 days of stirring, a yellow solution resulted. Methyl iodide (excess, $1 \mathrm{~cm}^{3}$) was added, and stirring was continued. The product was extracted into ether and after standard workup was obtained as a dark gum. Its solutions in organic solvents were highly fluorescent, and it turned rapidly blue in air and light. It was best isolated as the HI salt by treatment with ethanolic hydriodic acid: the white crystalline salt (340 mg) decomposed above $200^{\circ} \mathrm{C}$; mass spectrum, m / e (intens, \%), $200\left(\mathrm{M}^{+}, 100\right), 185(16.7), 184$ (11.7), 152 (36.1), 139 (13.8), 121 (15.8); IR (KBr) 2850, 1490, 1450, 1110, 1035, 980, 965 cm^{-1}. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$: C, 21.07; H, 3.09. Found: C, 21.32; H, 3.16 .

The Blue Polymer. ${ }^{9}$ A filtered solution of diamino tetrathiosulfonate $12(0.96 \mathrm{~g})$ in hot water (30 mL) was treated with concentrated $\mathrm{HCl}(30 \mathrm{~mL})$, and the dark mixture was boiled until no more SO_{2} evolved. The resulting red precipitate of hydrochloride was filtered, washed with concentrated HCl and ether successively, and dried. Trituration of the foregoing hydrochloride with dilute sodium hydroxide solution yielded the blue polymer which was filtered, washed with water, alcohol, and ether, and dried: $0.3 \mathrm{~g}(94.6 \%)$; IR (KBr) $3450,3350,1600,1400,1250,1020$ cm^{-1}.

2,3,5,6-Tetrakis(methylthio)-p-phenylenediamine (13). Reduction of the above polymer (0.12 g) in THF-water- NaOH suspension with excess sodium borohydride (300 mg) at $45^{\circ} \mathrm{C}$ over a period of 48 h followed by methylation with $\mathrm{Me}_{2} \mathrm{SO}_{4}(0.8$ mL) under nitrogen yielded a light yellow precipitate (0.08 g) that is extremely susceptible to oxidation in air and light leading to soluble blue polar material. A pure sample of $13(30 \mathrm{mg})$ was isolated by careful chromatography on alumina under inert atmosphere and crystallization from ether-hexane. It formed light yellow fluorescent prisms: $\mathrm{mp} 115^{\circ} \mathrm{C}(30 \mathrm{mg})$; mass spectrum, $m / e 292\left(\mathrm{M}^{+}, 100 \%\right)$; IR (KBr) $3400,3300,3000,2900,1570,1400$, $1250,1160,985 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{4}: \mathrm{C}, 41.10 ; \mathrm{H}$, 5.50. Found: C, 41.11; H, 5.60.

Acknowledgment. This work was supported by a grant from the National Science Foundation (85-14876).

Registry No. 8, 107474-48-6; 9.2HI, 107474-49-7; 10.2HI, 107474-50-0; 12, 107474-51-1; 12 (hydrochloride), 107474-52-2; 12 (hydrochloride homopolymer), 107474-54-4; 13, 107474-53-3.

Supplementary Material Available: Listings of anisotropic thermal parameters (1 page); listings of observed and calculated structure factors (2 pages). Ordering information is given on any current masthead page.

Stereochemistry of the Ring Opening of Chiral Epoxides Derived from Allylic Alcohols Having Two Substituted-Phenyl Groups

Kimio Takahashi and Masaru Ogata*

Shionogi Research Laboratories, Shionogi \& Co., Ltd., Fukushima-ku, Osaka, 553 Japan

Received August 7, 1986

The antifungal activity of imidazole- and triazole-containing compounds has led us to study their synthesis over the past few years. ${ }^{1}$ We have found that 2,3-diphenyl-3-oxo-1-(1H-1,2,4-triazol-1-yl)propan-2-ol derivatives such as 1 are orally active against fungi. ${ }^{2,3}$ As generally ob-

served with biologically active compounds, only one of the two enantiomers of the imidazole-containing compounds is active against fungi. ${ }^{3,4}$ We were interested in synthesizing optically active isomers of 1 by using the Sharpless asymmetric epoxidation to introduce chirality. ${ }^{5}$ The asymmetric epoxidation of allylic alcohols has been extensively studied and widely applied ${ }^{6}$ to syntheses of optically active compounds. However, few examples of the epoxidation of allylic alcohols having two substitutedphenyl groups have been reported. ${ }^{7}$ Moreover, although there are many reports of ring-opening epoxides that have aliphatic side chains, there are few examples of ringopening epoxides with two aromatic substituents. ${ }^{8-10}$ We
(1) Gravestock, M. B.; Ryley, J. F. Annual Reports in Medicinal Chemistry; Bailey, D. M., Ed.; Academic Press: Orlando, 1984; p 127.
(2) In formula \mathbf{a}, \mathbf{b}, and $\mathbf{c}, \mathrm{X}=\mathrm{Y}=\mathrm{H}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{Cl}$, and $\mathrm{X}=\mathrm{Y}=$ Cl , respectively, throughout this paper.
(3) (a) Walter, K.; Elmer, S. Eur. Pat. 0114 567. (b) John Martin, C.; Paul Anthony, W.; Michael Barry, G. Eur. Pat. 0114 487. (c) Ogata, M.; Matsumoto, H.; Tawara, K. Japan Unexamined Pat. Publn. No. 59 155365 , 1984. (d) Ogata, M.; Matsumoto, H.; Tawara, K. Japan Unexamined Pat. Publn. No. 59 199680, 1984. (e) Ogata, M.; Matsumoto, H.; Takahashi, K.; Kida, S.; Shimizu, S.; Murabayashi A.; Shiro, M.; Tawara, K. J. Med. Chem., in press.
(4) (a) Wiggins, T. E.; Baldwin, B. C. Pestic. Sci. 1984, 15, 206. (b) Sugavanam, B. Pestic. Sci. 1984, 15, 296. (c) Saji, K.; Ohuchi, R.; Hanma, N.; Atami, T.; Okuda, T.; Yanagi, K. Abstracts of Papers, 104th Annual Meeting of the Pharmaceutical Society of Japan, Sendai, March 1984, p 98.
(5) (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. (b) For a recent paper, see: Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986, 51, 1922.
(6) Review: Pfenninges, A. Synthesis 1986, 89.
(7) For the asymmetric epoxidation of α-phenylcinnamic alcohol: Lu , L. D.-L.; Johnson, R. A.; Finn, M. G.; Sharpless, K. B. J. Org. Chem. 1984, 49, 728.
(8) Rosowsky, A. In Heterocyclic Compounds with Three and FourMembered Rings, Weissberger, A., Ed.; Wiley: New York, 1964; pp 1-523. Bartbk, M.; Läng, K. L. In Small Ring Heterocycles, Part 3, Hassner, A., Ed.; Wiley: New York, 1985; pp 1-196.

have synthesized optically active ketols (+)-(S)-1 using asymmetric epoxidation of α-phenylcinnamyl alcohol derivatives $6 \mathbf{a}-\mathbf{c}$ followed by ring opening the epoxide, condensation with triazole, cleavage of the methoxy group, and oxidation. We discovered that the reactivity and stereochemistry of ring opening are very different among 8a-c. We here report the stereochemistry of their ring opening.

Results and Discussion

The acetate of allylic alcohol 4 a was prepared by the Wittig reaction of phosphonium salt 2a and ketone 3a, easily obtainable from 4 -chlorophenacyl bromide and sodium acetate. The major product is (E)-4a, with a UV spectrum ($230 \mathrm{~nm}, \epsilon 19800 ; 268 \mathrm{~nm}, \epsilon 14800$) typical of cis- α-phenylcinnamyl alcohol ($222 \mathrm{~nm}, \epsilon 15900 ; 257 \mathrm{~nm}$, $\epsilon 12500) .{ }^{11}$ The minor one is (Z)-5a, which has a UV spectrum ($283 \mathrm{~nm}, \epsilon 22000$) also typical of that of transcinnamyl alcohol ($273 \mathrm{~nm}, \epsilon 19800$). ${ }^{11}$ Four other acetates, $\mathbf{4 b , c}$ and $\mathbf{5 b , c}$ were prepared in a similar way (Scheme I). The major products $4 \mathrm{a}-\mathrm{c}$ were hydrolyzed to α-phenylcinnamyl alcohol derivatives 6a-c, which were treated with tert-butyl hydroperoxide (TBHP), titanium isopropoxide $\left[\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}\right]$, and $(+)$-diisopropyl L-tartrate [(+)-L-DIPT] in dichloromethane to give epoxides $8 \mathbf{a}-\mathbf{c}$ in $>80 \%$ yields. The enantiomeric excesses ${ }^{12}$ of $8 a$ and $8 b$ were $>90 \%$, but that of $8 \mathbf{c}$ was only 70%, probably because of the steric bulk of the two 2,4 -dichlorophenyl groups. ${ }^{13}$

Attempts to open the ring of epoxide $8 \mathbf{a}$ with NaOAc or NaOMe afforded a complex mixture, but the ring could be opened under acidic conditions. Treatment of $8 a$ with BF_{3} etherate or perfluorinated ion-exchange powder (Nafion) ${ }^{14}$ in methanol at $0^{\circ} \mathrm{C}$ gave a single isomer of the ring-opened compound 9 a in 82% yield (Scheme II). Attempts to determine the regio- and stereochemistry of this diol by cis hydroxylation of allylic compounds 4 a or 6a with KMnO_{4} or OsO_{4} did not succeed, but its structure was determined by X-ray analysis. ${ }^{3 e}$

The ring opening of epoxide $\mathbf{8 b}$ did not proceed at low temperature, but yielded 14 b on refluxing in MeOH for 6 h . The ring-opened compound, the only isolable product, was first assumed to have the same configuration as 9 a , but it turned out to be the opposite when 14 b was converted into the triazole-containing compound $\mathbf{1 7 b}$. Thus both 9 a and 14 b were tosylated with tosyl chloride and pyridine to 10 a and $15 b$, respectively. Treatment of each

[^0]tosylate with triazole yielded 11a and 16b. The methyl ether groups were cleaved with aluminum chloride and sodium iodide in acetonitrile. ${ }^{15}$ The diol thus obtained from $8 \mathbf{a}$ was identical with 12a, the major product from the sodium borohydride reduction of the ketol 1a, while the diol from 8b was identical with 17b, the minor reduction product from the ketol $\mathbf{1 b}$. The stereochemistry of the reduction products was confirmed by X-ray analy$\operatorname{sis}^{3 e}$ of carbonate $13 b$, prepared from diol 12 b . The major reduction products of ketol 1 had the $2 S, 3 R$ configuration, and the minor ones were $2 S, 3 S .{ }^{16}$ Diols 12 a and 17 b were oxidized with dimethyl sulfoxide-oxalyl chloride-triethylamine ${ }^{17}$ to optically active ketols $(S)-(+)-1 \mathbf{a}$ and (S)-(+)-1b, respectively.

Attempts to open the ring of 8 c with BF_{3} etherate, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}$, or Nafion in refluxing $\mathrm{MeOH}, \mathrm{BF}_{3}$ etherate in refluxing AcOH , or NaOMe in MeOH did not succeed.

The differences in the reactivity and stereochemistry of methanolysis ${ }^{18-20}$ among these three epoxides can be explained by the steric effect of their chlorine atoms. With 8a, the MeOH nucleophile can be easily approach the back side of the epoxide oxygen, which is coordinated with BF_{3}. With $\mathbf{8 b}$, MeOH cannot attack from the back side of the epoxide; after the epoxide ring opens up to give carbonium ion, MeOH would come from the opposite side of the 2,4 -dichlorophenyl group to give $\mathbf{1 4 b}$. With $8 \mathbf{c}$, coordination with BF_{3} or ring opening of the epoxide would be blocked by the chlorine atom at the 2 -position of the A phenyl ring.

In conclusion, asymmetric epoxidation of allylic alcohols that have two substituted phenyl groups, and ring opening of the resulting epoxide, can be used to synthesize chiral compounds, but the success depends on the substituents on the phenyl rings. In our compounds, the stereochemistry was controlled by the chlorine atoms on the phenyl rings.

Experimental Section

Melting points were determined on a Yanagimoto microapparatus or a Büchi apparatus and are uncorrected. A Hitachi 260-10 spectrophotometer was used to obtain IR spectra. UV spectra were recorded on a Hitachi 320 spectrophotometer. NMR spectra were obtained with a Varian T-60 or a Varian EM-390 spectrometer in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as the internal reference unless otherwise mentioned. Optical rotations were determined by using a Perkin-Elmer Model 241 polarimeter. Elemental analyses were performed by the analytical department of these laboratories. Chromatography was done on Merck silica gel 60 ($230-400$ mesh). TLC plates were purchased from E. Merck. The enantiomeric

[^1]
Scheme II

excess was determined by ${ }^{1} \mathrm{H}$ NMR of the corresponding MTPA ester. ${ }^{12}$
(E)-2,3-Bis(4-chlorophenyl)prop-2-en-1-yl Acetate (4a) and Z Isomer 5a. n-BuLi (15% in hexane, 21 mL) was added dropwise to a stirred suspension of phosphonium salt 2a (13.8 $\mathrm{g}, 32.6 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$, the ketone $3 \mathrm{a}(6.93 \mathrm{~g}, 32.6 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added dropwise at $0-5{ }^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 1 h and filtered, and the filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}$. The combined filtrate was evaporated and chromatographed. Elution with hexane/AcOEt (95/5) afforded 5a (1.81 $\mathrm{g}, 17 \%$): mp 111-113 ${ }^{\circ} \mathrm{C}$ (AcOEt/hexane); IR (CHCl_{3}) $1740 \mathrm{~cm}^{-1}$; UV (MeOH) 283 nm ($\epsilon 22000$); NMR $\delta 7.50-7.20(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ $\times 8), 6.92(1 \mathrm{H}, \mathrm{s}$, vinyl H$), 5.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right)$, and $2.00(3 \mathrm{H}$, s, Ac). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Cl}_{2} ; \mathrm{C}, 63.56 ; \mathrm{H}, 4.39 ; \mathrm{Cl}, 22.08$. Found: $\mathrm{C}, 63.34 ; \mathrm{H}, 4.45 ; \mathrm{Cl}, 21.84$. Further elution gave 4 a (3.46 $\mathrm{g}, 33 \%$): $\mathrm{mp} 81-82^{\circ} \mathrm{C}$ ($\mathrm{AcOEt} /$ hexane); IR (CHCl_{3}) $1740 \mathrm{~cm}^{-1}$; UV (MeOH) $230 \mathrm{~nm}(\epsilon 19800$) and 268 (14800); NMR $\delta 7.60-7.20$ $(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 8), 6.62(1 \mathrm{H}, \mathrm{s}$, vinyl H$), 5.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right)$, and $2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 63.56 ; \mathrm{H}$, 4.39; Cl, 22.08. Found: C, 63.73; H, 4.31; Cl, 22.46.
(\boldsymbol{E})-3-(4-Chlorophenyl)-2-(2,4-dichlorophenyl)prop-2-en1 -yl Acetate (4b) and Z Isomer 5 b. Wittig reaction of 2 b (21.15 $\mathrm{g}, 50 \mathrm{mmol}$) and the ketone $\mathbf{3 b}(12.35 \mathrm{~g}, 50 \mathrm{mmol})$ yielded $5 \mathbf{b}$ (2.71 $\mathrm{g}, 15 \%$) : mp $73-75^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane); NMR $\delta 7.45-7.15(7 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH} \times 7), 6.62(1 \mathrm{H}, \mathrm{s}$, vinyl H$), 5.04\left(2 \mathrm{H}\right.$, brs, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, and 1.88 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Cl}_{3}: \mathrm{C}, 57.41 ; \mathrm{H}, 3.68$; $\mathrm{Cl}, 29.91$. Found: C, 57.25 ; H, 3.80; Cl, 30.13. Further elution gave 4b ($6.17 \mathrm{~g}, 35 \%$): mp $61-63{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane $)$; NMR δ $7.55-6.85(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 7$ and vinyl H$), 4.88\left(2 \mathrm{H}, \mathrm{brs}, \mathrm{CH}_{2} \mathrm{O}\right)$, and $2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Cl}_{3}: \mathrm{C}, 57.41 ; \mathrm{H}$, 3.68 ; $\mathrm{Cl}, 29.91$. Found: C, $57.26 ; \mathrm{H}, 3.81 ; \mathrm{Cl}, 30.18$.
(E)-2,3-Bis(2,4-dichlorophenyl)prop-2-en-1-yl Acetate (4c) and Z Isomer 5 c . Wittig reaction of $2 \mathrm{c}(4.75 \mathrm{~g}, 10 \mathrm{mmol})$ and 3c ($2.47 \mathrm{~g}, 10 \mathrm{mmol}$) gave $5 \mathrm{c}(0.37 \mathrm{~g}, 10 \%)$ as an oil: NMR δ $7.40-7.16(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 6), 6.60(1 \mathrm{H}, \mathrm{s}$, vinyl H), $4.88(2 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{O}$), and $1.82(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$. Further elution afforded 4 c (1.50 $\mathrm{g}, 39 \%$) as an oil: NMR $\delta 7.50-6.50(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 6$ and vinyl H), $4.90\left(2 \mathrm{H}, \mathrm{brs}, \mathrm{CH}_{2} \mathrm{O}\right)$, and $2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$. These compounds were used in the next step without further purification.
(E)-2,3-Bis(4-chlorophenyl)prop-2-en-1-ol (6a). A mixture of the acetate $4 \mathrm{a}(3.40 \mathrm{~g}, 10.6 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.76 \mathrm{~g}, 12.7 \mathrm{mmol})$, and $\mathrm{MeOH}(30 \mathrm{~mL})$ was stirred at room temperature for 1 h . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. The organic layer was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated to give 6a (2.08 $\mathrm{g}, 69 \%$) : mp 126-127 ${ }^{\circ} \mathrm{C}$ (AcOEt-hexane); NMR $\delta 7.45-6.80$ (8 $\mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 8), 6.64(1 \mathrm{H}$, s, vinyl H$), 4.38(2 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, and $1.80(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{OH})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{OCl}_{2}: \mathrm{C}, 64.53 ; \mathrm{H}, 4.33 ; \mathrm{Cl}, 25.40$. Found: $\mathrm{C}, 64.19 ; \mathrm{H}, 4.35$; Cl, 25.47 .
(E)-3-(4-Chlorophenyl)-2-(2,4-dichlorophenyl)prop-2-en1 -ol (6 b). Hydrolysis of the acetate $\mathbf{4 b}(1.70 \mathrm{~g}, 4.78 \mathrm{mmol}$) as above gave $6 \mathrm{~b}(1.41 \mathrm{~g}, 94 \%)$ as an oil: NMR $\delta 7.50-6.86(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$
$\times 7$ and vinyl H$), 4.36\left(2 \mathrm{H}\right.$, brs, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, and $2.00(1 \mathrm{H}$, brs, OH$)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{OCl}_{3}: \mathrm{C}, 57.46 ; \mathrm{H}, 3.51 ; \mathrm{Cl}, 33.93$. Found: C, 57.63; H, 3.73; Cl 33.54 .
(E)-2,3-Bis(2,4-dichlorophenyl)prop-2-en-1-ol (6c). Hydrolysis of the acetate $4 \mathrm{c}(4.20 \mathrm{~g}, 10.77 \mathrm{mmol})$ as above yielded $6 \mathrm{c}(3.60 \mathrm{~g}, 96 \%): \mathrm{mp} 55-57^{\circ} \mathrm{C}$ (Et $\mathrm{E}_{2} \mathrm{O}$-hexane); NMR $\delta 7.50-6.55$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 6$ and vinyl H), $4.40\left(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right.$), and $2.90(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OH})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{OCl}_{4}$: $\mathrm{C}, 51.76 ; \mathrm{H}, 2.90 ; \mathrm{Cl}, 40.75$. Found: C, $52.13 ; \mathrm{H}, 3.00 ; \mathrm{Cl}, 41.04$.
(2S,3S)-2,3-Bis(4-chlorophenyl)-2,3-epoxypropan-1-ol (8a). $(+)$-L-DIPT ($0.85 \mathrm{~mL}, 4 \mathrm{mmol}$) was added to a stirred solution of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(1.19 \mathrm{~mL}, 4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. After $5 \mathrm{~min} \mathbf{6 a}(1.12 \mathrm{~g}, 4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added, then TBHP (3.3 M in toluene 1.13 mL) was added, and the solution was kept at $-20^{\circ} \mathrm{C}$ for 15 h . Tartaric acid (10% in $\mathrm{H}_{2} \mathrm{O}$, 10 mL) was added, and the solution was stirred at room temperature for 1 h . Layers were separated and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was chromatographed with AcOEt/hexane ($5 / 95$) to give 8a ($965 \mathrm{mg}, 81 \%$) as an oil: NMR $\delta 7.35-6.80(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 8), 4.50\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{3}-\mathrm{H}\right)$, $4.00\left(2 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, and $3.35(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OH})$; $[\alpha]^{23}{ }_{\mathrm{D}}+60.9^{\circ}$ (c $\left.1.05, \mathrm{EtOH}\right),>90 \%$ ee. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Cl}_{2}$: C, 61.03; $\mathrm{H}, 4.10 ; \mathrm{Cl}, 24.03$. Found: C, $61.31 ; \mathrm{H}$, 4.19; Cl, 23.99 .
($2 S, 3 S$)-3-(4-Chlorophenyl)-2-(2,4-dichlorophenyl)-2,3-epoxypropan-1-ol (8b). The alcohol $6 \mathrm{~b}(1.40 \mathrm{~g}, 4.47 \mathrm{mmol})$ was treated as above yielding $8 \mathrm{~b}(1.20 \mathrm{~g}, 81 \%)$ as an oil: NMR δ $7.70-6.85(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 7), 4.52\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{3}-\mathrm{H}\right), 4.10(2 \mathrm{H}, \mathrm{d}, J$ $=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), and $2.92(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OH}) ;[\alpha]^{23}{ }_{\mathrm{D}}+39.7^{\circ}$ (c 1.14, CHCl_{3}), $>90 \%$ ee. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Cl}_{3}: \mathrm{C}, 54.66$; H, 3.36; Cl, 32.27. Found: C, 54.68 ; H, 3.43; Cl, 32.07.
(2S,3S)-2,3-Bis(2,4-dichlorophenyl)-2,3-epoxypropan-1-ol (8c). The alcohol $6 \mathbf{c}(1.39 \mathrm{~g}, 4.0 \mathrm{mmol})$ was treated as above to give $8 \mathrm{c}(1.17 \mathrm{~g}, 80 \%): \operatorname{mp~} 111-113^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane); NMR δ $7.50-6.50(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 6), 4.76\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{3}-\mathrm{H}\right), 4.05(2 \mathrm{H}, \mathrm{d}, J$ $\left.=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, and $3.00(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OH}) ;[\alpha]^{25}+148.2^{\circ}$ (c 1.02, CHCl_{3}), 70% ee. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Cl}_{4}: \mathrm{C}, 49.48$; H, 2.77; Cl, 38.96. Found: C, 49.61; H, 2.91; Cl, 38.90 .
($2 S, 3 R$)-2,3-Bis(4-chlorophenyl)-3-methoxypropane-1,2diol (9a). (a) A mixture of the epoxide $8 \mathrm{a}(1.50 \mathrm{~g}, 5.08 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~g}, 7.04 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and chromatographed with AcOEt/hexane (2/8) to give $9 \mathrm{a}(1.36 \mathrm{~g}$, 82%) as an oil: NMR $\delta 7.30-6.75(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 8), 4.34(1 \mathrm{H}$, s, $\left.\mathrm{C}_{3}-\mathrm{H}\right), 4.05$ and 3.70 (each 1 H , each dd, $J=7, J=12 \mathrm{~Hz}$) 3.25 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), $3.20(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $2.20(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OH})$; $[\alpha]^{23}-80.8^{\circ}(c 1.01, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Cl}_{2}$: C, $58.73 ; \mathrm{H}, 4.93$; Cl, 21.67. Found: C, 59.07 ; $\mathrm{H}, 4.86 ; \mathrm{Cl}, 21.77$.
(b) A mixture of the epoxide $8 \mathrm{a}(295 \mathrm{mg}, 1.0 \mathrm{mmol})$ and Na fion ${ }^{14}(100 \mathrm{mg})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The mixture was filtered and evaporated to give 9 a ($290 \mathrm{mg}, 89 \%$), which was identical with the authentic material prepared in a.
(2S,3S)-3-(4-Chlorophenyl)-2-(2,4-dichlorophenyl)-3-methoxypropane-1,2-diol (14b). A mixture of the epoxide $8 \mathbf{b}$ $(1.20 \mathrm{~g}, 3.64 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.52 \mathrm{~g}, 3.64 \mathrm{mmol})$ in $\mathrm{MeOH}(24$ mL) was refluxed for 6 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with aqueous NaHCO_{3} solution. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and chromatographed. Elution with hexane/AcOEt ($8 / 2$) gave 14 b ($756 \mathrm{mg}, 57 \%$) as an oil: IR (film) $3450 \mathrm{~cm}^{-1}$; NMR $\delta 7.40-6.85(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 7), 5.12(1 \mathrm{H}$, $\mathrm{s}, \mathrm{C}_{3}-\mathrm{H}$), 4.48 and 4.24 (each 1 H , each d, $J=12 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 3.90 $\left(2 \mathrm{H}\right.$, brs, $\mathrm{OH} \times 2$), and $3.26(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ;[\alpha]^{25} \mathrm{D}-73.9^{\circ}(c 1.00$, CHCl_{3}). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{Cl}_{3}$: $\mathrm{C}, 53.13 ; \mathrm{H}, 4.18 ; \mathrm{Cl}, 29.41$. Found: C, 52.86; H, 4.16; Cl, 29.09.
($2 S, 3 R$)-2,3-Bis(4-chlorophenyl)-3-methoxy-1-[(p-tolyl-sulfonyl)oxy]propan-2-ol (10a). A mixture of the diol 9 a (1.51 $\mathrm{g}, 4.62 \mathrm{mmol}), p-\mathrm{TsCl}(0.88 \mathrm{~g}, 4.62 \mathrm{mmol})$, and pyridine (15 mL) was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 h . The mixture was poured into ice and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was chromatographed (hexane/AcOEt, 8/2) to give $10 \mathrm{a}(1.99 \mathrm{~g}, 90 \%$) as an oil, which was used in the next step without further purification: NMR $\delta 7.75-6.70(12 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 12), 4.50$ and 4.16 (each 1 H , each d, $\left.J=12 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{3}-\mathrm{H}\right), 3.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right)$.
($2 S, 3 S$)-3-(4-Chlorophenyl)-2-(2,4-dichlorophenyl)-3-methoxy-1-[(p-tolylsulfonyl)oxy]propan-2-ol (15b). Tosylation of the diol $\mathbf{1 4 b}$ ($640 \mathrm{mg}, 1.77 \mathrm{mmol}$) as above afforded $\mathbf{1 5 b}$ ($690 \mathrm{mg}, 76 \%$): mp 157-159 ${ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$-hexane); NMR $\delta 7.75-6.85$ ($11 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 11$), 5.08 and 4.70 (each 1 H , each d, $J=12 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.96\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{3}-\mathrm{H}\right), 3.44(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.22(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right) ;[\alpha]^{23} \mathrm{D}-72.9^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{Cl}_{3} \mathrm{~S}: \mathrm{C}, 53.55 ; \mathrm{H}, 4.10 ; \mathrm{Cl}, 20.62 ; \mathrm{S}, 6.22$. Found: C, 53.27 ; H, 4.07; Cl, 20.91; S, 5.93.
(2S,3R)-2,3-Bis(4-chlorophenyl)-3-methoxy-1-(1H-1,2,4-triazol-1-yl)propan-2-ol (11a). A mixture of the tosylate 10a ($1.90 \mathrm{~g}, 3.95 \mathrm{mmol}$), 1,2,4-triazole ($0.55 \mathrm{~g}, 7.90 \mathrm{mmol}$), NaH (50% mineral oil dispersion, $0.379 \mathrm{~g}, 7.90 \mathrm{mmol}$), and DMF (10 mL) was stirred at $70^{\circ} \mathrm{C}$ for 2 h . The mixture was poured into ice and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to leave an oil which was chromatographed. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(95 / 5)$ gave 11a ($1.25 \mathrm{~g}, 84 \%$) as an oil: NMR $\delta 8.00$ and 7.80 (each 1 H , each s, triazole $\mathrm{H} \times 2$), $7.30-6.70(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 8), 4.72$ and 4.55 (each 1 H , each d, J $\left.=12 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.02\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{3}-\mathrm{H}\right)$, and $3.16(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$. Oxalate: $\mathrm{mp} 159-161^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $[\alpha]^{23} \mathrm{D}-82.0^{\circ}(c 1.02$, EtOH). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Cl}_{2}$: C, $51.29 ; \mathrm{H}, 4.09 ; \mathrm{N}, 8.97 ; \mathrm{Cl}$, 15.14. Found: C, 51.29 ; H, 4.06; N, 9.01; Cl, 15.38.
($2 S, 3 S$)-3-(4-Chlorophenyl)-2-(2,4-dichlorophenyl)-3-methoxy-1-(1H-1,2,4-triazol-1-yl)propan-2-ol (16b). Similar reaction of the tosylate $\mathbf{1 5 b}(690 \mathrm{mg}, 1.34 \mathrm{mmol})$ as above gave 16b ($440 \mathrm{mg}, 80 \%$) as an oil: NMR $\delta 7.96$ and 7.76 (each 1 H , each s, triazole $\mathrm{H} \times 2$), $7.30-6.80(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 7), 5.52$ and 4.94 (each 1 H , each d, $\left.J=15 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.18\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{3}-\mathrm{H}\right), 4.54$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), and $3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}\right.$). Oxalate: $\mathrm{mp} 92-94{ }^{\circ} \mathrm{C}$ ($\mathrm{AcOEt} / \mathrm{Et}_{2} \mathrm{O}$); $[\alpha]^{23}{ }_{\mathrm{D}}-11.3^{\circ}(c 1.01, \mathrm{EtOH})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Cl}_{3}$: C, 47.68; $\mathrm{H}, 3.80 ; \mathrm{N}, 8.34 ; \mathrm{Cl}, 21.12$. Found: C, 47.44; H, 3.96; N, 8.21; Cl, 21.36.
($2 S, 3 R$)-2,3-Bis(4-chlorophenyl)-1-(1H-1,2,4-triazol-1yl) propane-2,3-diol (12a). A mixture of $11 \mathrm{a}(1.30 \mathrm{~g}, 3.44 \mathrm{mmol})$, $\mathrm{AlCl}_{3}(1.37 \mathrm{~g}, 10.3 \mathrm{mmol})$, and $\mathrm{NaI}(1.55 \mathrm{~g}, 10.3 \mathrm{mmol})$ in MeCN $(10 \mathrm{~mL})$ was refluxed for 8 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue was chromatographed. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(95 / 5)$ gave the starting material 11a ($340 \mathrm{mg}, 26 \%$). Further elution afforded 12a ($640 \mathrm{mg}, 51 \%$): $\mathrm{mp} \mathrm{181-183}{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; NMR $\delta 7.94$ and 7.74 (each 1 H , each s, triazole $\mathrm{H} \times 2$), $7.30-6.80(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 8)$, 4.76 and 4.46 (each 1 H , each d, $\left.J=13 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.55(1 \mathrm{H}$, s, $\mathrm{C}_{3}-\mathrm{H}$); $[\alpha]^{25}{ }_{\mathrm{D}}-0.7^{\circ}(c) 1.01, \mathrm{CHCl}_{3}$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}_{2}$: C, $56.06 ; \mathrm{H}, 4.15 ; \mathrm{N}, 11.54 ; \mathrm{Cl}, 19.47$. Found: C, 55.98 ; H, 4.19; N, 11.42; Cl, 19.18.
($2 S, 3 S$)-3-(4-Chlorophenyl)-2-(2,4-dichlorophenyl)-1-(1H-1,2,4-triazol-1-yl)propane-2,3-diol (17b). Similar reaction of 16 b ($340 \mathrm{mg}, 0.82 \mathrm{mmol}$) as above yielded 17 b ($254 \mathrm{mg}, 78 \%$): mp 164-166 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 8.32$ and 7.54 (each 1 H , each s, triazole $\mathrm{H} \times 2$), $7.40-6.90(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 7$), 5.90 $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}-\mathrm{OH}\right), 6.26\left(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{OH}\right), 5.60(1 \mathrm{H}, \mathrm{d}, J$
$=5 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}$), 5.46 and 4.84 (each 1 H , each d, $J=15 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$); $[\alpha]^{23}{ }_{\mathrm{D}}-47.1^{\circ}(c 1.00, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}_{3}$: C, $51.21 ; \mathrm{H}, 3.54 ; \mathrm{N}, 10.61$; $\mathrm{Cl}, 26.68$. Found: C, 51.31 ; H, 3.61 ; N, 10.53; Cl, 26.75 .
(S)-(+)-2,3-Bis(4-chlorophenyl)-3-oxo-1-(1H-1,2,4-tri-azol-1-yl)propan-2-ol [(S)-(+)-1a]. $\mathrm{Me}_{2} \mathrm{SO}(1 \mathrm{~mL})$ was added dropwise to a stirred solution of oxalyl chloride ($127 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. Diol 12a ($364 \mathrm{mg}, 1 \mathrm{mmol}$) was added and the solution was stirred at $-78^{\circ} \mathrm{C}$ for $15 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$ was added, and the solution was stirred at room temperature for 15 min . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine, and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 98 / 2\right)$, yielding $(S)-(+)-(1 \mathrm{a})(293 \mathrm{mg}, 81 \%): \mathrm{mp} 161-163^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $1720 \mathrm{~cm}^{-1}$; NMR $\delta 8.02$ and 7.86 (each 1 H , each s, triazole $\mathrm{H} \times$ 2), $7.90-7.20(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 8), 6.30(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 5.03$ and 4.37 (each 1 H , each d, $J=13 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$); $[\alpha]^{23}{ }_{\mathrm{D}}+117.3^{\circ}$ (c 1.00 , CHCl_{3}). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 56.38 ; \mathrm{H}, 3.62 ; \mathrm{N}$, $11.60 ; \mathrm{Cl}, 19.58$. Found: $\mathrm{C}, 56.43 ; \mathrm{H}, 4.01 ; \mathrm{N}, 11.95 ; \mathrm{Cl}, 19.83$.
(S)-(+)-3-(4-Chlorophenyl)-2-(2,4-dichlorophenyl)-3-oxo-1-(1H-1,2,4-triazol-1-yl)propan-2-ol [(S)-(+)-1b]. Oxidation of the diol $17 \mathrm{~b}(127 \mathrm{mg}, 1 \mathrm{mmol})$ as above provided $(S)-(+)-1 \mathrm{~b}$ $(122 \mathrm{mg}, 81 \%): \mathrm{mp} 200-202^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1720 \mathrm{~cm}^{-1}$; NMR 7.88 and 7.66 (each 1 H , each s, triazol $\mathrm{H} \times 2$), $7.80-7.20$ $(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH} \times 7), 6.75(1 \mathrm{H}$, brs, OH$) 5.12$ and 4.84 (each 1 H , each d, $\left.J=15 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ;[\alpha]^{23} \mathrm{D}+282.0^{\circ}$ ($c 1.01, \mathrm{CHCl}_{3}$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}_{3}$: C, $51.47 ; \mathrm{H}, 3.05 ; \mathrm{N}, 10.59 ; \mathrm{Cl}, 26.82$. Found: C, $51.41 ; \mathrm{H}, 3.21 ; \mathrm{N}, 10.61 ; \mathrm{Cl}, 26.91$.

Facile De-tert-butoxycarbonylations of β-Keto Esters and Mixed Malonate Esters Using Water in Dimethyl Sulfoxide

A. Paul Krapcho* and Gowrikumar Gadamasetti

Department of Chemistry, The University of Vermont, Burlington, Vermont 05405

Received December 4, 1986

Dealkoxycarbonylations of malonate esters, β-keto esters, and α-cyano esters (and other related activated substrates) to esters, ketones, and cyanides, respectively, using water or water $/ \mathrm{LiCl}$ (or other salts) in dipolar aprotic solvents such as $\mathrm{Me}_{2} \mathrm{SO}$ are important synthetic reactions. ${ }^{1}$

During the course of preparation of 4 -acetylheptane1,7 -dinitrile (2), we have investigated the dealkoxycarbonylations of the β-keto esters 1a and $\mathbf{1 b}$ under several reaction conditions.

On heating the β-keto ester la with water $/ \mathrm{Me}_{2} \mathrm{SO} / \mathrm{LiCl}$ for 5 h at reflux, the dinitrile 2 could be isolated in a 60% yield. In the absence of the LiCl only about 10% reaction occurred under reflux for 3 days.

[^2]
[^0]: (9) Behrens, C. H.; Ko, S. Y.; Sharpless, K. B.; Walker, F. J. J. Org. Chem. 1985, 50, 5687 .
 (10) Examples of ring opening of epoxides having one phenyl group. (a) Erickson, T. J. J. Org. Chem. 1986, 51, 934. (b) Hashiyama, T.; Inoue, H.; Takeda, M.; Murata, S.; Nagao, T. Chem. Pharm. Bull. 1985, 33, 2348.
 (11) Brewster, J. H.; Bayer, H. O. J. Org. Chem. 1964, 29, 105.
 (12) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.
 (13) Steric effect on the asymmetric epoxidation was reported. Schweiter, M. J.; Sharpless, K. B. Tetrahedron Lett. 1985, 26, 2543.
 (14) Olah, G. A.; Fung, A. P.; Meidar, D. Synthesis 1981, 280.

[^1]: (15) Node, M.; Ohta, K.; Kajimoto, T.; Nishide, K.; Fujita, E.; Fuji, F. Chem. Pharm. Bull. 1983, 31, 4178.
 (16) Sodium borohydride reduction of 1 and X-ray analysis of 13b were carried out in racemic compounds; see ref 3e. Absolute stereochemistry was determined by Sharpless asymmetric epoxidation rule (ref 5a).
 (17) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480.
 (18) Battisani, C.; Crotti, P.; Damiani, D.; Macchia, F. J. Org. Chem. 1979, 44, 1643.
 (19) Sayer, J. M.; Yagi, H.; Silverton, J. V.; Friedman, S. L.; Whalen, D. L.; Jerina, D. M. J. Am. Chem. Soc. 1982, 104, 1972.
 (20) Ukachukwu, V. C.; Blumenstein, J. J.; Whalen, D. L. J. Am. Chem. Soc. 1986, 108, 5039.

[^2]: (1) (a) Krapcho, A. P. Synthesis 1982, 805. (b) Krapcho, A. P. Synthesis 1982, 893.

